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From the point of view of a generalization of [i], the present article touches on the 
not fully established boundary layer of the flow, formed in a viscous incompressible homo- 
geneous liquid, surrounding an infinite porous plate, with uniform blowing or suction of the 
medium. The liquid and the plate are rotating as a solid body with a constant angular 
velocity ~o = const. Not fully established flow is induced by noncircular vibrations of the 
plate. The structure of the not fully established field of the velocities and of the boun- 
dary layer formed adjacent to the plate is determined. It has been found that, in this case 
(with blowing or suction of the medium), an exact solution can be found to the three-di- 
mensional, non-steady-state Navier--Stokes equations. The velocity field found can be used 
for an analysis of an non-steady-state layer at the porous surface of a moving body. The 
non-steady-state problem without blowing has been discussed in [2]. 

i. Let us consider an infinite plate, moving with the velocity u (t) in its own plane. 
There is blowing or suction of the medium through the surface of the plate with the velocity 
u1(t). The medium is a viscous incompressible liquid, occupying a half-space bounded by the 
plate. The motion of the liquid is described by the Navier--Stokes equations and the follow- 
ing conditions, which, in the usual notation, have the form 

Ov/Ot + (vV)V + 2~o • v = - - V P  -~ v h v , d i v  v = 0 ~ Q, 
v - - { u ( t ) ,  u l ( t )%} at S, t > O ,  [v[--~O with ] r ] - + ~ ,  t > O ,  ( 1 . 1 )  

where e y is a unit vector of the Cartesian system of coordinates Oxyz, perpendicular to the 
plane of the plate. The plane Oxz coincides with the plane of the plate. 

The motion of the liquid starts from a state of rest, so that v (0, r) = 0 with rE Q. 

We seek the solution of system (i.i) in the form 

v = { v ~ ( y ,  t), ~q(t), v=(y, t ) } ,  

P = 2~o~u~(t)x -- 2oOxUl(t)z -- OUly/Ot + p(g, t). 

To determine the field of the velocities we obtain the following system of equations: 

Ovx/Ot '-- 2O)oyV: = Lv.~, 
dr,lOt -- 2(ooyv ~ := Lv=, 

OpiSy = 2(coo~v.~- O~oxV~), (1.2) 

where L = v32/3y = -- u1(t)3/3y. 

We seek the solution of system (1.2) in the form 

v = w.  s i n 2 ~ t - - w  X ey.cos  2~ t ,  (1.3) 

where w is an unknown function; ~ = ~Oy. 

The unknown function w(y, t) satisfies a differential equation of parabolic type and 

the boundary conditions 
Ow/Ot = Lw; 

w = u(t) .  sin 2 ~ t  -4- u(t) • % .cos  2 ~ t ,  

wig r~ S, t>0; (1.4) 
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!w]-+0with t=0, y>0; 

lWl ~ 0 with y -~ ~ .  

Let us first examine the case where u~(t) =const =a, which corresponds to uniform 
suction or blowing. Here, a > 0 corresponds to blowing of the medium through the surface of 
the porous plate, and a < 0 to suction of the surrounding medium. 

The solution of the problem (1.4) using a Duhamel integral can be written in the form 

t 

0 

( 1 . 5 )  

where w~ is a solution of the following boundary-value problem: 

Ow/Ot "i- aOw/Oy = vO~'wJOy 2, 

~t. for t > O ,  
w~ (0, t) = ~0, fo~ t < O, 

iwi! -+ 0 with y ~ co. 

( 1 . 6 )  

We solve the system of equations (1.6) using the method of a Laplace transform. We 
introduce the Laplace transform of the functions by the relationship 

(p) = I" e - ~  u (t) a t .  

In the space of the transforms, the differential equation 

p~ ' :  - -  a ~ ' : / @  ~  " = ~'O'wJ@-, 

wlI~-o = {l /p) . i ,  

iWlI --~ 0 with ~ -+ co. 

(1.6) has the form 

(i. 7) 

The solution of system (1.7) has the form 

~v1(p, y)= (!/p).i e-~. Re~> 0, 

7, = a/2v ~- ] a2/4~ 3 + p/~. ( 1 . 8 )  

Going o v e r  to  i n v e r s e  t r a n s f o r m s ,  t h e  s o l u t i o n  o f  ( 1 . 8 )  can be w r i t t e n  in  t h e  form [3] 

w 1 (g, t) = -2- 1 .e -~y/'v e -a~''2v erfc . ~ ~ }/  %- + erfc . 2 1 /~  i ~-. �9 ( 1 . 9 )  

Thus, the solution of system (1.4) is given by formulas (1.5) and (1.9). 

S u b s t i t u t i n g  ( 1 . 5 )  i n t o  ( 1 . 3 ) ,  t a k i n g  a c c o u n t  o f  ( 1 . 9 ) ,  we o b t a i n  t h e  s o u g h t  v e l o c i t y  
f i e l d  o f  the  s t a r t i n g  p rob l em 

t 

v = s i n 2 Q t .  Tdto [ u ( T ) . s i n 2 Q z + u ( ~ ) •  %.cos2.Q~] -~- e-aY/Verfc V~-~:-'~) -~ + 
0 

t 

2 ] / ~  + -2- dr -t- cos 2Qt.% X 7/- [u (~)-sin2fl~+ 
0 

-~ n (~) X e u. cos 2QT] -5- e av/v erfc 2 ] / v  (t - -  ~) ~ + 

(1.!o) 

2. Let us consider the practically important case of motion of a plate at a constant 
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acceleration. It is convenient to carry out further transformation in complex form. We 
introduce the complex vectors 

v =  V z + iVx, i f =  U z "+- iux .  (2.1) 

Using (2.1) and setting a = 0 (no blowing), the field of the velocities can be rewritten in 
the form 

b - - -  

t 

y ! $.(~) 
2 "V-h-4 (t - ~)8/,. 

_ _  e-eZfl(t-r)-v~'," av( t -X)d,  

It is of interest to determine the viscous stresses acting on the plate from the side of the 
plate: 

t 0 e_i~n(t_~) ! 
V-v / '=  --P t - i f - . )  (t - ,)~,~ dr. 

0 

Setting u = ~t, where b is a constant vector, we have 

t 

--= "by f xe - i~ 'a( t -x) -y2/av( t -x)  
2 "V'a'~J ~ dr.  

O 

Denoting o = i2~, 
tain 

and carrying out the replacement of variables t- T = 0; T = t -- 0, we ob- 

t 

^ b'y {'t--O y~ 
v ---- ~ J ~ exp [ - - a O -  4S-4"0] dO. 

0 

(2.2) 

Dividing the integral in (2.2) into two parts, we obtain 

t by ~'exp[--(rO--~',,4vO dO; b'yt ~ exp - -  o'0 - -  4~"~0 dO - -  - - -  

0 0 

J1 was calculated earlier [2] in the form 

']'1 ---- e--vV Y T er fc  2 ~  

Taking account of the calculation of the similar integral in [2], and omitting the compu- 
tational techniques, we give the expression for J2 

Ter fc /  ~/ --etj--e erfc ff'-~ .r = Le , 
^ 

For v we finally have 

~=-~ 

We introduce a characteristic parameter, the so-called complex time: 

t* = y/2]/o-~. 

Then 

) -'A/Z S(t ~ t*) s erfc ~ + vr~ + t*) 
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The velocity field obtained can be used for analysis of an non-steady-state boundary 
layer at the porous surface of a moving body. 

1. 
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COMPLEX HEAT EXCHANGE OF A DISPERSED TURBULENT FLOW IN A PIPE 

I. F. Guletskaya and F. N. Lisin UDC 536.2--3 

i. We will write the energy equation for a turbulent flow of a gas and suspended matter 
in a pipe in the form [i, 2] 

(1.l) 

where B is the volume concentration of the solid phase, ~ and ~t are the molecular and tur- 
bulent thermal conductivity, respectively, <v~T~> is the turbulent energy transport by parti- 
cles, and q r is the resultant radiation flux. 

It is necessary for a description of the heat exchange of a two-phase flow to supplement 
Eq. (i.i) with an energy equation for the particles. We will discuss the turbulent flow of 
a gas and suspended matter with a low concentration of heavy particles, i.e., B <<i. The 
particles are distributed uniformly over the cross section of the pipe. Then Eq. (i.i), 
upon neglect of terms containing B, is written in dimensionless form as 

az  - -  ~e 7- ~ Pr P~t  ~- v" divq~,  ( 1 . 2 )  
i 

where @ = T/To, x = x/D, ~ = r/R, Bo = c0~/ooT~, Re = ~D/v; u is the average velocity, Pr t 
is the turbulent Prandtl number, To is the ambient temperature at the pipe entrance (To > TI), 
and vt is the turbulent viscosity. The boundary conditions for (1.2) are of the form 

0(7.; o) - -  > o; 0 = o, .  

form 
2. The velocity distribution in viscous and transition layers is given in [3] in the 

z~ 2.3 L , * ~  , 5 .8 ,  3 0 < ~  ~ ' * ' J f  v* - -  z o Ig  T ~ "-~ "~  700; 

u/v* = v'y/v, and v*y/~ < 30 (y is the distance from the wall). 

The value of the tangential stress T in a dispersed flow is related to the analogous 
quantity in a pure gas flow To by the relationship 

T/~ = i ~ ' I~ ,  (2.1) 

where ~ is the discharge concentration and ~ is a coefficient reflecting the strength of the 
effect of U on the degree of deformation of the velocity distribution in a two-phase flow. 
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